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A B S T R A C T

Series elastic actuators (SEA) have been gaining increasing popularity as a mechanical drive in contemporary
force-controlled robotic manipulators thanks to their ability to infer the applied torque from measurements
of the elastic element’s deflection. Accurate deflection control is crucial to achieve a desired output torque
and, therefore, unmodelled dynamics and dynamic loads can severely compromise force fidelity. Multi-input
active disturbance rejection controllers (ADRC) have the ability to estimate such disturbances affecting the
plant behaviour and cancel them via an appropriate feedback controller. Thus, they offer a promising control
architecture for SEA. ADRC, however, can have upwards of eight tuning parameters for each controlled state.
Tuning the controller becomes quite challenging, especially in the context of multi-input, multi-objective
control.

This paper tackles the problem of ADRC tuning as a multi-parametric and multi-objective optimization
approach. An ADRC is developed to regulate the output torque of a multi-input hybrid motor-brake–clutch
SEA. The controller has a total of 22 tunable parameters. Point dominance-based nondominated sorting genetic
algorithm is used to find the optimal control gains, first considering nine individual control objectives, and then
in the context of multi-objective. The algorithm provides a set of potential solutions that highlight the tradeoffs
between the control objectives. It is up to the discretion of the designer to select the appropriate solution that
best suits a given application. The approach is validated experimentally and the results are compared with a
simulated model. Experimental results confirm the suitability of the proposed approach for single and multiple
control objectives in a variety of experimental scenarios and show good agreement with the analytical model.
. Introduction

Series elastic actuators (SEAs) with passive compliance are gaining
errain in the field of collaborative human–robot systems. They incor-
orate an elastic element between the mechanical drive and the robot
rm, trading off bandwidth for gains in stability, force control, and
obustness against shock loads (DeBoon, Nokleby, La Delfa, & Rossa,
019). As a result of the inherent increasing complexity in the actuation
ystem, SEA control architecture must be adapted to take into account
nmodelled dynamics and other disturbances.

SEA often use model-based force controllers, suggesting that the
ontroller has significant background knowledge about the plant. In
any cases such as in the context of human–robot interaction, creating

he model is not feasible or, if time is of the essence, resource con-
uming. This is where active disturbance rejection controllers (ADRC)
lourish, since they are error based and the exact plant model need not
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be known. ADRC is a viable substitute for the familiar proportional–
integral–derivative (PID) controller where a more robust control strat-
egy is necessary (Ahi & Nobakhti, 2017; Wu, Sun, & Lee, 2017; Xing,
Jeon, Park, & Oh, 2013; Zhao & Guo, 2015). PID controllers have three
tuning parameters, each with well defined properties. ADRC, however,
can have upwards of eight tuning parameters for each controlled state.
Therefore, tuning the controller becomes challenging and depends
completely on the control objective for a given application.

Single-objective genetic algorithms (GAs) and other stochastic meth-
ods have been used to tune ADRC gains in a variety of applications
ranging from force and temperature control to rocket position con-
trol (Geng, Yang, Zhang, & Chen, 2010; Hou, Wang, Gong, & Zhang,
2018; Hu, Zhang, & Liu, 2013; Li et al., 2018; Wang, Lu, Hou, &
Gao, 2018; Yin, Du, Liu, Sun, & Zhong, 2018; Zhang, Fan, Zhao, Ai,
& Gong, 2014). Many optimization and convergence studies have been
conducted on tuning the tracking differentiator and extended state
observer gains for ADRCs (Du et al., 2018; Wang, Zu, Duan, & Li,
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2019; Zhang, Xiao, Yu, & Xie, 2020; Zhang, Xu, & Gerada, 2019).
Optimizing a controller, however, is often not a single objective task.
ADRC gains have conflicting implications in the controller performance
and as such, optimizing several control objectives at a time, such as
rise time, settling time, overshoot, control effort, and tracking error,
is impractical. In the majority of design problems and in particular in
human–machine interaction systems, many of these control objectives
need to be taken into account and balanced.

A more suitable approach to automate the tuning of an ADRC must
incorporate multiple control objectives, giving rise to a new challenge:
there may be more than a single set of parameters that satisfies the
objectives (Madoński, Piosik, & Herman, 2013). Several algorithms
have been developed to address this issue, including nondominated
sorting genetic algorithms (NSGA-II) and strength pareto evolutionary
algorithms (SPEA2). In problems with an increased number of objec-
tives, the performance of these algorithms is known to deteriorate since
behaviour becomes similar to randomly exploring the search space
since most solutions are nondominated with respect to each other (Deb
& Saxena, 2006; Kalyanmoy et al., 2001). For this reason, other solvers
capable of solving many-objective problems are needed.

In all NSGA solvers, a solution that performs better than another
in at least one objective, and not worse in any other objective is
said to be dominant. In order to tune the ADRC, 9 objectives will be
defined later on. With such a large number of objectives, most solutions
will be uniquely optimal to a given objective and will prevent the
algorithm from converging. A solution to this issue can be resolved
using reference point domination to improve the diversity of solutions
along the pareto front (Deb & Jain, 2014; Hernandez Mejia et al., 2017)
by forcing them to distribute along the search space (Ciro, Dugardin,
Yalaoui, & Kelly, 2016). This concept, called 𝜃-NSGA-III, is further
xpanded in Yuan, Xu, and Wang (2014) to push solutions closer
o the pareto front. Preference incorporation in integrated in Elarbi,
echikh, Gupta, Said, and Ong (2018) to create a new algorithm,
he RPD-NSGA-II that further improves convergence and diversity of
he solutions. This method is shown in Elarbi et al. (2018), to pro-
ide similar or better results when compared against its predecessing
enetic algorithms on commonly-used benchmark problems involving
p to 20 objectives. Thus, it is selected for the multi-parametric and
ulti-objective problem of ADRC tuning presented in this paper.

This paper tackles the problem of ADRC tuning as a multi-
arametric and multi-objective optimization approach applied to SEA
or human–machine interaction. An ADRC is developed to regulate the
utput torque of a multi-input SEA comprising of a brake and motor.
orque control is achieved indirectly by monitoring the deflection of
he elastic element and adjusting it via a distributed control law for
he brake and motor torques, rendering the system as a multi-input,
ingle-output (MISO) entity. The ADRC has 22 tuning parameters, 11
or the motor and 11 for the brake controller. One of the contributions
f this paper includes using the point dominance-based nondominated
orting genetic algorithm to find the optimal control gains, first for nine
ndividual control objectives, and then for all control objectives at once.
ather than converging to a single solution, the algorithm provides a set
f optimal solutions that highlight the tradeoff between different con-
rol objectives. A solution that best suits a given application can then
e selected. Another contribution of this paper is the optimization of a
ual input SEA controller. To the best of the authors’ knowledge, this
s the first implementation of a multi-parametric and multi-objective
ain optimizer of ADRC gain applied specifically to a dual input SEAs.
he framework proposed in this paper has applications in a variety of
ther control architectures and systems.

The remainder of this paper is structured as follows. First, the
ISO SEA actuator is introduced and its state space model is derived.
he multi-input ADRC is then laid out, including the extended state
bservers and the distributive control law for the brake and motor.
he optimization algorithm is introduced in Section 4 along with all

erformance objectives, mainly, tracking error, control effort, percent

2

overshoot, rise time, settling time, maximum input, steady-state er-
ror, disengagement time, and the number of input direction changes.
Experimental results confirm the suitability of the proposed approach
for single and multiple control objectives in a variety of experimental
scenarios and show good agreement with the analytical model.

2. MISO series elastic actuator model

Consider the differentially-clutched SEA we introduced in DeBoon
et al. (2019). The actuator is composed of a DC motor in series with
a spring, connected to a magnetic particle brake through a differential
clutch. A simplified dynamics diagram and a picture of the device are
shown in Fig. 1. The actuator has three operating modes. Mode 1:
The brake is fully engaged and the actuator acts like a classical SEA.
Mode 2: The brake is engaged and the motor is static. The user is then
directly coupled to a grounded spring whose stored energy is controlled
by adjusting the braking torque. Hybrid mode: Both the motor and
rake are engaged, and the brake and differential act as a continuous
ariable-slip clutch between the spring and the output. As the motor
ompresses the spring, the brake regulates the amount of energy stored
n the spring, thereby controlling the output torque.

The actuator demonstrated above is a multi-input device that mea-
ures spring deflection to infer the output torque at the end-effector.
he deflection is determined through the difference in encoder mea-
urements between the motor-mounted encoder and the spring-side
haft encoder.

The device dynamics can be summarized by the following set of
ifferential equations (DeBoon et al., 2019):

𝑚𝜃̈𝑚 + 𝑏𝑚𝜃̇𝑚 + 𝑘𝑠𝛥𝜃𝑠 = 𝜏𝑚 (1)

𝐽𝑏𝜃̈𝑏 − 4𝑏𝑑 𝜃̇𝑢 + (4𝑏𝑑 + 𝑏𝑏)𝜃̇𝑏 + 𝑘𝑠𝛥𝜃𝑠 = 𝜏𝑏 (2)

𝐽𝑢𝜃̈𝑢 + 𝑏𝑢𝜃̇𝑢 + 𝑘𝑢𝜃𝑢 = 𝜏𝑢 (3)

where 𝑘𝑠 is the stiffness of the spring, 𝜃 is the angular position, the
dot operators ( ̇ ) and (̈) represent the first and second time deriva-
tives, respectively. 𝐽 and 𝑏 represent the inertial and viscous friction
coefficients, and 𝜏 represents a torque. Throughout this paper, sub-
scripts 𝑚, 𝑏, 𝑢, and 𝑑 refer to the dynamics in the motor body, brake
body, user/output body, and the differential gearbox, respectively. 𝑘𝑢
refers to the spring constant of an output measurement device or a
passive elastic environment. 𝜏𝑚 is the motor torque, which for low
speed can also be related through the input voltage 𝑉𝑚 of the device
𝜏𝑚 = (𝐾𝑚𝑉𝑚)∕𝑅𝑎 where 𝐾𝑚 is the motor torque constant and 𝑅𝑎 is the
winding resistance of the motor. The brake torque 𝜏𝑏 can be modelled
as 𝜏𝑏 = 𝑓 (𝑉𝑏∕𝑅𝑏) where 𝑉𝑏 is the input voltage of the brake and 𝑅𝑏 is the
winding resistance. This function in a natural state is nonlinear due to
magnetic hysteresis of the particle brake, however, in this paper it will
be simplified to be proportional to the input current through a gain 𝐾𝐻 .
Finally, 𝜏𝑢 represents the user torque acting against the satellite-side
dynamics of the differential gearbox.

For an open differential layout where the torque is split evenly
between the planetary gears the following equations hold (see Fig. 1a):
𝜏𝑢
2

= 𝜏𝑏 = 𝜏𝑠 (4)

𝜃𝑢 =
𝜃𝑏 + 𝜃𝑠

2
(5)

Note that (5) also holds for the first and second time derivatives,
i.e. 𝜃̈𝑢 = (𝜃̈𝑏 + 𝜃̈𝑠)∕2). Combining the previous equations to make
the system independent of the position of the user, the following two
differential equations are obtained:

𝜃̈𝑏 =
𝐽𝑢𝜃̈𝑠 + (4𝑏𝑑 + 𝑏𝑢)𝜃̇𝑠 + 𝑘𝑢𝜃𝑠 − (4𝑏𝑑 + 4𝑏𝑏 − 𝑏𝑢)𝜃̇𝑏 + 𝑘𝑢𝜃𝑏 − 4𝜏𝑏

4𝐽𝑏 − 𝐽𝑢
(6)

𝜃̈𝑠 =
𝐽𝑢𝜃̈𝑏 + (4𝑏𝑑 + 𝑏𝑢)𝜃̇𝑏 + 𝑘𝑢𝜃𝑏 − (4𝑏𝑑 + 4𝑏𝑏 − 𝑏𝑢)𝜃̇𝑠 + (𝑘𝑢 + 4𝑘𝑠)𝜃𝑠 − 4𝑘𝑠𝜃𝑚

4𝐽𝑠 − 𝐽𝑢
(7)
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Fig. 1. Multi-input series elastic actuator (SEA): (a) shows the SEA topology introduced in DeBoon et al. (2019). It uses a DC motor, a spring, a rheological brake, a torsion
spring. The spring is located between the motor and the differential, whose other side is attached to the brake. The satellite gears of the differential make up the output shaft of
the actuator; (b) is an image of the actuator showing the two inputs (motor and brake) as well as the differential clutch mechanism.
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Substituting (7) into (6) yields:

𝜃̈𝑏 =
𝐽𝑢𝑘𝑠
𝐽

𝜃𝑚 +
𝐽𝑠𝑘𝑢
𝐽

𝜃𝑏 +
𝐽𝑢(2𝑏𝑑 + 𝑏𝑏) − 𝐽𝑠(4𝑏𝑑 + 4𝑏𝑏 − 𝑏𝑢)

𝐽
𝜃̇𝑏

+
𝐽𝑠𝑘𝑢 − 𝐽𝑢𝑘𝑠

𝐽
𝜃𝑠

+
𝐽𝑠(4𝑏𝑑 + 𝑏𝑢) − 𝐽𝑢(𝑏𝑠 + 2𝑏𝑑 )

𝐽
𝜃̇𝑠 +

𝐽𝑢 − 4𝐽𝑠
𝐽

𝜏𝑏 (8)

where 𝐽 = 4𝐽𝑠𝐽𝑏−𝐽𝑢𝐽𝑠−𝐽𝑢𝐽𝑏. Similarly, by inserting (6) into (7) obtains:

̈𝑠 =
(4𝐽𝑏 − 𝐽𝑢)𝑘𝑠

𝐽
𝜃𝑚 +

𝐽𝑏𝑘𝑢
𝐽

𝜃𝑏 +
𝐽𝑏(4𝑏𝑑 + 𝑏𝑢) − 𝐽𝑢(2𝑏𝑑 + 𝑏𝑏)

𝐽
𝜃̇𝑏

+
𝐽𝑏𝑘𝑢 − 4𝐽𝑏𝑘𝑠 + 𝐽𝑢𝑘𝑠

𝐽
𝜃𝑠

+
𝐽𝑢(𝑏𝑠 + 2𝑏𝑑 ) + 𝐽𝑏(𝑏𝑢 − 4𝑏𝑠 − 4𝑏𝑏)

𝐽
𝜃̇𝑠 −

𝐽𝑢
𝐽
𝜏𝑏 (9)

The previous equations can be rearranged to generate the multi-
nput state space model of the actuator for a state vector 𝛩 =
𝜃𝑚 𝜃̇𝑚 𝜃𝑏 𝜃̇𝑏 𝜃𝑠 𝜃̇𝑠]𝑇 as 𝛩̇ = 𝐀𝛩 + 𝐁𝐕, that is:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜃̇𝑚
𝜃̈𝑚
𝜃̇𝑏
𝜃̈𝑏
𝜃̇𝑠
𝜃̈𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟
𝛩̇

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
− 𝑘𝑠

𝐽𝑚
− 𝑏𝑚

𝐽𝑚
0 0 𝑘𝑠

𝐽𝑚
0

0 0 0 1 0 0
𝐽𝑢𝑘𝑠
𝐽 0 𝐽𝑠𝑘𝑢

𝐽 𝑎44
𝐽𝑠𝑘𝑠−𝐽𝑢𝑘𝑢

𝐽 𝑎46
0 0 0 0 0 1

(4𝐽𝑏−𝐽𝑢)𝑘𝑠
𝐽 0 𝐽𝑏𝑘𝑢

𝐽 𝑎46
𝐽𝑏𝑘𝑢−4𝐽𝑏𝑘𝑠+𝐽𝑢𝑘𝑠

𝐽 𝑎66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜃𝑚
𝜃̇𝑚
𝜃𝑏
𝜃̇𝑏
𝜃𝑠
𝜃̇𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
𝐾𝑚

𝐽𝑚𝑅𝑎
0

0 0
0 𝐾ℎ(𝐽𝑢−4𝐽𝑠)

𝑅𝑏𝐽
0 0
0 −𝐾ℎ𝐽𝑢

𝑅𝑏𝐽

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐁

[

𝑉𝑚
𝑉𝑏

]

(10)

where the constants 𝑎𝑖𝑗 in matrix A are

𝑎44 =
𝐽𝑢(2𝑏𝑑 + 𝑏𝑏) − 𝐽𝑠(4𝑏𝑑 + 4𝑏𝑏 − 𝑏𝑢)

𝐽

46 =
𝐽𝑠(4𝑏𝑑 + 𝑏𝑢) − 𝐽𝑢(𝑏𝑠 + 2𝑏𝑑 )

𝐽

𝑎64 =
𝐽𝑏(4𝑏𝑑 + 𝑏𝑢) − 𝐽𝑢(2𝑏𝑑 + 𝑏𝑏)

𝐽

66 =
𝐽𝑢(𝑏𝑠 + 2𝑏𝑑 ) + 𝐽𝑏(𝑏𝑢 − 4𝑏𝑠 − 4𝑏𝑏)

𝐽

ith 𝐕 =
[

𝑉𝑚 𝑉𝑏
]𝑇 being the input vector. When the actuator rotates,

the output torque 𝜏𝑜𝑢𝑡 can be calculated based on the relative compres-
sion of both sides of the elastic element 𝛥𝜃 , its stiffness constant 𝑘 ,
𝑠 𝑠 e

3

nd all dynamic losses as:

𝑜𝑢𝑡 = 𝐽𝑢𝜃̈𝑢 + 4𝑏𝑑 𝜃̇𝑢 − 4𝑏𝑑 𝜃̇𝑏 − 2𝑘𝑠𝛥𝜃𝑠 (11)

where 𝛥𝜃𝑠 = 𝜃𝑚 − 𝜃𝑠. By substituting 𝜃𝑢 for the differential law in (5),
the governing equation for the application of the output torque

𝜏𝑜𝑢𝑡 = 2𝐽𝑠𝜃̈𝑠+2𝑏𝑠𝜃̇𝑠+2𝑏𝑑 (𝜃̇𝑠−𝜃̇𝑏)+2𝑘𝑠(𝜃𝑠−𝜃𝑚)+
𝐽𝑢
2
(𝜃̈𝑠+𝜃̈𝑏)+

𝑏𝑢
2
(𝜃̇𝑠+𝜃̇𝑏) (12)

y neglecting the minimal inertia in the spring-side and user-side dif-
erential bodies, the governing equation of the output torque becomes:

𝑜𝑢𝑡 =
(

𝑏𝑢
2

− 2𝑏𝑑

)

𝜃̇𝑏 +
(

𝑏𝑢
2

+ 2𝑏𝑑 + 2𝑏𝑠

)

𝜃̇𝑠 − 2𝑘𝑠𝛥𝜃𝑠. (13)

ith the MISO state–space model known, the active disturbance rejec-
ion controller can be developed.

. Multi-input active disturbance rejection torque controller

The objective of ADRC is to provide accurate torque outputs based
trictly on measurements of the deflection of the spring. A reasonable
stimate of the deflection angle can be extracted from the encoder
eadings on either side of the spring. Active disturbance rejection
ontrol (ADRC) will be used for this purpose, as ADRC is an error-based
ontrol method that can compensate for unmodelled disturbances, such
s backlash and brake hysteresis, via a time-optimal solution to a
eference trajectory designed for non-ideal systems. The output of the
ontroller can be distributed to multiple inputs, which is the case for
he actuator described earlier. Convergence of nonlinear ADRCs for
ulti-input systems is demonstrated in Guo and Zhao (2013).

.1. Reference and transient output torque through spring deflection profile

In the context of torque control for the elastic actuator, the transient
rofile is an updated reference that is a function of the proportional
rror 𝑒1 and time varying error 𝑒2 for the single output system:

1(𝑘) = 𝜏𝑟𝑒𝑓 (𝑘) − 𝜏𝑖𝑛𝑓 (𝑘) = 𝜏𝑟𝑒𝑓 (𝑘) − 𝑘𝑠(𝜃𝑚(𝑘) − 𝜃𝑠(𝑘)) (14)

2(𝑘) = 𝑒2(𝑘 − 1) + 𝑓ℎ𝑎𝑛(𝑒1(𝑘), 𝑒2(𝑘 − 1), 𝑟0, ℎ0) (15)

here 𝜏𝑟𝑒𝑓 is the reference torque, and 𝜏𝑖𝑛𝑓 = 𝑘𝑠(𝜃𝑚 − 𝜃𝑠) is the inferred
utput torque measured from the deflection of the elastic element
easured at sample 𝑘. These errors can be inserted into the fhan

unction from Han (2009) along with an acceleration coefficient 𝑟0 and
smoothing factor ℎ0 to produce a desired transient profile as shown in
Fig. 2. The fhan function is defined as:

𝑓ℎ𝑎𝑛 = −𝑟0

[(

𝑎
ℎ0𝑟20

− sign(𝑎)
)

𝑠𝑎 + sign(𝑎)
]

(16)

This function creates distinct transient profiles with differing accel-
ration rates 𝑟 for the same reference. The output of fhan provides
0
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Fig. 2. Transient profiles generated with various acceleration rates 𝑟 = 10, 50, 100, 200
or a reference deflection signal. The transient profile for the desired spring deflection
rovides an achievable alternative reference signal compared to the infinite derivative
eference square profile.

realistic alternative to transients in physical systems, as an input
eference such as a Heaviside step function has an infinite derivative
t the transient point which is impossible to recreate. The constants in
16) are (Han, 2009):
2
1 = ℎ0𝑟

2
0
(

ℎ0𝑟
2
0 + 8|𝑒1 + ℎ0𝑒2|

)

𝑠𝑦 = sign(𝑒1 + ℎ0𝑒2 + ℎ0𝑟
2
0) − sign(𝑒1 + ℎ0𝑒2 − ℎ0𝑟

2
0)∕2

𝑎2 = ℎ0𝑒2 + sign(𝑒1 + ℎ0𝑒2)(𝑎1 − ℎ0𝑟
2
0)∕2

𝑎 = (ℎ0𝑒2 + 𝑒1 + ℎ0𝑒2 − 𝑎2)𝑠𝑦 + 𝑎2
𝑠𝑎 = sign(𝑎 + ℎ0𝑟

2
0)∕2 − sign(𝑎 − ℎ0𝑟

2
0)∕2

where 𝑎, 𝑎1, 𝑎2, 𝑠𝑦, and 𝑠𝑎 are intermediate variables.
The position and velocity reference commands for each of the sub-

systems of the multi-input actuator can be derived from the reference
torque generated by the desired transient profile mentioned above.
Once the desired profile is determined, (14) and (16) can be used to
determine the controllable reference position and velocity states. The
process is demonstrated for one of the subsystems (motor position and
velocity) through the following discrete set of equations:

𝜏𝑟𝑒𝑓 (𝑘) = 𝜏𝑟𝑒𝑓 (𝑘 − 1) + ℎ𝜏̇𝑟𝑒𝑓 (𝑘 − 1) (17)
𝜏̇𝑟𝑒𝑓 (𝑘) = 𝜏̇𝑟𝑒𝑓 (𝑘 − 1) + ℎ ∗ 𝑓ℎ𝑎𝑛(𝜏𝑖𝑛𝑓 (𝑘 − 1) − 𝜏𝑟𝑒𝑓 (𝑘 − 1), 𝜏̇𝑟𝑒𝑓 (𝑘 − 1), 𝑟0, ℎ)

(18)

𝜃𝑚(𝑘) = 𝜃𝑚(𝑘 − 1) + ℎ𝜃̇𝑚(𝑘 − 1) (19)

𝜃̇𝑚(𝑘) = 𝜃̇𝑚(𝑘 − 1) + ℎ ∗ 𝑓ℎ𝑎𝑛(𝜃𝑚(𝑘 − 1) −
𝜏𝑟𝑒𝑓 (𝑘 − 1)

𝑘𝑠
− 𝜃𝑠(𝑘 − 1),

𝜃̇𝑚(𝑘 − 1), 𝑟10, ℎ
1
0) (20)

where ℎ is the sampling period and 𝑟10 and ℎ10 are tuning parameters
related to controller aggression and error levelling, respectively. The
remaining subsystems can be computed in a similar manner to (19) and
(20). This ensures each subsystem of the controller collectively tries to
minimize the error 𝑒1(𝑘) of the single output relative to the last sampled
state of the actuator (𝑘 − 1).

3.2. Extended state observers

Consider the multi-input single-output (MISO) time varying system
described in Section 2 with 6 state variables defined by the vector
𝛩𝑗 ∈ R, 𝑗 = 1, 2, .., 6 as 𝛩 = [𝑥11 𝑥12 𝑥21 𝑥22 𝑥31 𝑥32]

𝑇 or 𝛩 =

[𝜃𝑚 𝜃̇𝑚 𝜃𝑠 𝜃̇𝑠 𝜃𝑏 𝜃̇𝑏]𝑇 as defined in (10). A block diagram of
the controller is shown in Fig. 3. In this example, a system with three in-
dependent states 𝜃𝑚, 𝜃𝑠, and 𝜃𝑏 as well as their first time derivatives are
measurable. Therefore, a total of three system equations for the ADRC
can be used. The three subsystems (𝑖 = 1, 2, 3) and their respective
nonlinearities are:

⎧

⎪

⎨

⎪

⎩

𝑥̇𝑖1 = 𝑓 𝑖
1(𝑡, 𝑥

1
1, 𝑥

1
2, 𝑥

2
1, 𝑥

2
2, 𝑥

3
1, 𝑥

3
2, 𝐷

𝑖(𝑡))
𝑥̇𝑖2 = 𝑓 𝑖

2(𝑡, 𝑥
1
1, 𝑥

1
2, 𝑥

2
1, 𝑥

2
2, 𝑥

3
1, 𝑥

3
2, 𝐷

𝑖(𝑡)) + 𝑏𝑖(𝑡, 𝑥11, 𝑥
1
2, 𝑥

2
1, 𝑥

2
2, 𝑥

3
1, 𝑥

3
2)𝑢

𝑖(𝑡)
𝑦𝑖 = 𝑥𝑖1
(21) p

4

where 𝑓𝑗 , 𝑗 = 1, 2, and 𝑏 are imperfect or nonlinear functions describing
the subsystem and any external disturbances captured in 𝐷(𝑡), 𝑢𝑖(𝑡) is
the control input of the subsystem, and 𝑦𝑖(𝑡) is the output, an angular
displacement for the multi-input plant described in Section 2. The
three local total disturbance terms can be estimated and combined
by equating 𝑥̄𝑖1 = 𝑦𝑖 and 𝑥̄𝑖2 = 𝑓 𝑖

1(𝑡, 𝑥
𝑖
1, 𝑥

𝑖
2, 𝐷

𝑖(𝑡)), which provides the
following description of the subsystem with a common disturbance
term:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

̇̄𝑥𝑖1 = 𝑥̄𝑖2
̇̄𝑥𝑖2 =

𝜕𝑥̄𝑖2
𝜕𝑡 +

𝜕𝑥̄𝑖2
𝜕𝑥11

𝜕𝑥11
𝜕𝑡 +

𝜕𝑥̄𝑖2
𝜕𝑥12

𝜕𝑥12
𝜕𝑡 +

𝜕𝑥̄𝑖2
𝜕𝑥21

𝜕𝑥21
𝜕𝑡 +

𝜕𝑥̄𝑖2
𝜕𝑥22

𝜕𝑥22
𝜕𝑡 +

𝜕𝑥̄𝑖2
𝜕𝑥31

𝜕𝑥31
𝜕𝑡 +

𝜕𝑥̄𝑖2
𝜕𝑥32

𝜕𝑥32
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝐷𝑖

𝜕𝐷𝑖

𝜕𝑡

−
𝜕𝑥̄𝑖2
𝜕𝑥𝑖2

𝜕𝑥𝑖2
𝜕𝑡 +

𝜕𝑥̄𝑖2
𝜕𝑥𝑖2

𝑓 𝑖
2(𝑡, 𝑥

1
1, 𝑥

1
2, 𝑥

2
1, 𝑥

2
2, 𝑥

3
1, 𝑥

3
2, 𝐷

𝑖(𝑡))

+
𝜕𝑥̄𝑖2
𝜕𝑥𝑖2

𝑏𝑖(𝑡, 𝑥11, 𝑥
1
2, 𝑥

2
1, 𝑥

2
2, 𝑥

3
1, 𝑥

3
2)𝑢

𝑖(𝑡)

𝑦𝑖 = 𝑥̄𝑖1
(22)

A linear approximation 𝑏̄𝑖(𝑡) for the nonlinear term 𝑏𝑖 allows the
ubsystem to be extended by a new state representing the sum of
isturbances as 𝑥̄𝑖3. This disturbance and its first time derivative ̇̄𝑥𝑖3 are
efined by:

̇̄𝑥𝑖2 = 𝑥̄𝑖3 + 𝑏̄𝑖(𝑡)𝑢𝑖(𝑡)
̇̄𝑥𝑖3 = 𝑓 𝑖

3(𝑡, 𝑥
1
1, 𝑥

1
2, 𝑥

2
1, 𝑥

2
2, 𝑥

3
1, 𝑥

3
2)

(23)

here the total disturbance of the subsystem can be combined to
roduce:

̄ 𝑖3 =
𝜕𝑥̄𝑖2
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝑥11

𝜕𝑥11
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝑥12

𝜕𝑥12
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝑥21

𝜕𝑥21
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝑥22

𝜕𝑥22
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝑥31

𝜕𝑥31
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝑥32

𝜕𝑥32
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝐷𝑖

𝜕𝐷𝑖

𝜕𝑡
−

𝜕𝑥̄𝑖2
𝜕𝑥𝑖2

𝜕𝑥𝑖2
𝜕𝑡

+
𝜕𝑥̄𝑖2
𝜕𝑥𝑖2

𝑓 𝑖
2(𝑡, 𝑥

1
1, 𝑥

1
2, 𝑥

2
1, 𝑥

2
2, 𝑥

3
1, 𝑥

3
2, 𝐷

𝑖(𝑡))

+

(

𝜕𝑥̄𝑖2
𝜕𝑥𝑖2

𝑏𝑖(𝑡, 𝑥11, 𝑥
1
2, 𝑥

2
1, 𝑥

2
2, 𝑥

3
1, 𝑥

3
2) − 𝑏̄𝑖(𝑡)

)

𝑢𝑖(𝑡) (24)

The controller has three extended state observers (ESO) to determine
the angular displacement and velocity of each of the subsystems. The
ESO evaluates discrepancies in expected values and estimates distur-
bances present in each of the subsystems. The state extension of the
ESO provides a means of evaluating nonlinearities around the spring
deflection, magnetic hysteresis, static friction, and other unmodelled
disturbances. Each ESO is defined as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇̂𝑥𝑖1 = 𝑥̂𝑖2 − 𝛽𝑖01𝑔
𝑖
1(𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

𝑖(𝑡))
̇̂𝑥𝑖2 = 𝑥̂𝑖3 − 𝛽𝑖02𝑔

𝑖
2(𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

𝑖(𝑡)) + 𝑏̄𝑖(𝑡)𝑢
̇̂𝑥𝑖3 = −𝛽𝑖03𝑔

𝑖
3(𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

𝑖(𝑡))
𝑦̂𝑖 = 𝑥̂𝑖1

(25)

here 𝛽𝑖0𝑗 𝑗 = 1, 2, 3 are the observer gains for a dual integral plant
tate 𝑖 and 𝑔𝑖(𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂(𝑡)) is an error function for subsystem 𝑖. See
ppendix A for the full derivation.

.3. Control law

The issue surrounding multi-input systems lies in the derivation of
he control law for each input. In systems employing a single extended
tate observer, the control law often is some combination of the pro-

osed control input 𝑢𝑝 and a disturbance error correction. In single input
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Fig. 3. Block diagram of a simplified version of the controller. The profile generator adjusts the input at unrealistic instantaneous reference transients to improve differential
racking error; the nonlinear feedback combiner aggregates the proportional and time-varying error in the states and proposes an input to the plant. The extended state observer
rovides a means of estimating and compensating unmodelled disturbances by creating a new state that encapsulates all disturbances in the system. This disturbance is fed into a
ontrol law that generates the actual control inputs for the MISO system.
Fig. 4. Overall updated nonlinear ADRC scheme for a multi-input SEA. Three nonlinear
feedback combiners (NFC) and three extended state observers (ESO) are utilized to
adapt to perturbations in the spring deflection. The reference is first input into the
transient profile generator, where an updated reference is determined. The estimated
states from the ESOs are then combined into the NFCs and finally distributed to the
multi-input system through the control law.

systems, the control law is similar to the following:

𝑢(𝑡) = −
(

𝑥̂3(𝑡) − 𝑢𝑝(𝑡)
) (

𝑏̄
)−1 (26)

where 𝑢𝑝(𝑡) is from the nonlinear feedback combiner detailed below,
and 𝑘1 and 𝑘2 are proportional and derivative control gains, respec-
ively. Note that many valid linear or nonlinear controllers for 𝑢𝑝 exist.

Potential single-input nonlinear operators are suggested by Han in Han
(2009), where the proposed control input could be (see Fig. 3):

𝑢𝑝 = 𝑘1 𝑓𝑎𝑙(𝜏𝑟𝑒𝑓 − 𝜏𝑖𝑛𝑓 , 𝛾1, ℎ) + 𝑘2 𝑓𝑎𝑙(𝜏̇𝑟𝑒𝑓 − ̂̇𝜏𝑖𝑛𝑓 , 𝛾2, ℎ) (27)

with 0 < 𝛾1 < 1 < 𝛾2 being tuning parameters, and the nonlinear 𝑓𝑎𝑙
function is

𝑓𝑎𝑙(𝑒, 𝛾, ℎ) =

{

𝑒
ℎ1−𝛾

, |𝑒| ≤ ℎ
∣ 𝑒 ∣𝛾 sign(𝑒), |𝑒| ≥ ℎ

(28)

designed to improve convergence time (Han, 2009). The goal of the
nonlinear feedback combiner is to assist in converging at a faster
rate than a PID controller. It is similar to producing time-varying PD
gains. Since a static proportional and derivative gain can guarantee
convergence for a reasonable range (Wang, Dodds, & Bailey, 1996),
tuning the values of 𝛾1 and 𝛾2 can maintain this guarantee with the
advantage of faster convergence times.

The primary method of controlling the torque in the multi-input
single-output (MISO) SEA from Section 2 uses both controllable inputs,
i.e., the commanded motor voltage 𝑉𝑚 and brake voltage 𝑉𝑏, in a
distributive manner. The actual control input for the dual-input system
5

is given as (see Fig. 4):

𝑢0 = 𝑢1 + 𝑢2 = 𝑓1(𝑘𝑠𝛥𝜃𝑠)𝑉 𝑚𝑎𝑥
𝑚 + 𝑓2(𝑘𝑠𝛥𝜃𝑠)𝑉 𝑚𝑎𝑥

𝑏

=
3
∑

𝑖=1

𝑝𝑖0(𝑓ℎ𝑎𝑛(𝜀
𝑖
1, 𝜀

𝑖
2, ℎ

𝑖
1, 𝑟

𝑖
1) − 𝑥̂𝑖3)

𝑏̄𝑖
, (29)

𝑢1 =
3
∑

𝑖=1

𝑝𝑖1(𝑓ℎ𝑎𝑛(𝜀
𝑖
1, 𝜀

𝑖
2, ℎ

𝑖
1, 𝑟

𝑖
1) − 𝑥̂𝑖3)

𝑏̄𝑖
, (30)

𝑢2 =
3
∑

𝑖=1

𝑝𝑖2(𝑓ℎ𝑎𝑛(𝜀
𝑖
1, 𝜀

𝑖
2, ℎ

𝑖
1, 𝑟

𝑖
1) − 𝑥̂𝑖3)

𝑏̄𝑖
(31)

where 𝑢0 represents the total control effort of the actuator, and 𝑢1 and
𝑢2 represent the input for the motor and brake, respectively. 𝑝0 is a
distributive gain consisting of the sum of all subsystem gains 𝑝𝑖𝑗 , 𝑗 =
1, 2, 3. These are tunable proportional parameters that map subsystem
error to the causal inputs. A unity gain for a specific subsystem error
function indicates that the cause of the error for the subsystem is
directly addressed by the input in question. 𝜀1 and 𝜀2 are the observed
proportional and time-varying error between the reference profiles gen-
erated in (19) and (20), and the observed states 𝑥̂1 and 𝑥̂2, respectively.
These error functions are derived from the relationship between each
subsystem and the single output 𝜏𝑜𝑢𝑡 given the current state of the
actuator, i.e. the angular position and velocity of the remaining states.
𝑟1 and ℎ1 are adjustable parameters unique to each subsystem. 𝑥̂𝑖3 is the
total disturbance estimated by the observer from subsystem 𝑖. With the
above control law the input distribution converges provided that

∀𝑘𝑠𝛥𝜃𝑠 < 𝜏𝑟𝑒𝑓∃[𝑓1(𝑘𝑠𝛥𝜃𝑠) > 0] ∧ [𝑓2(𝑘𝑠𝛥𝜃𝑠) > 0] ∋ 𝛥𝜃̇𝑠 ≥ 0. (32)

and

∀𝑘𝑠𝛥𝜃𝑠 > 𝜏𝑟𝑒𝑓∃[𝑓1(𝑘𝑠𝛥𝜃𝑠) < 0 ∧ 𝑓2(𝑘𝑠𝛥𝜃𝑠) > 0], ∨ [𝑓1(𝑘𝑠𝛥𝜃𝑠)

= 0 ∧ 𝑓2(𝑘𝑠𝛥𝜃𝑠] = 𝑢0∕𝑉𝑏) ∋ 𝛥𝜃̇𝑠 ≤ 0

with 𝑓1 ∈ [−1, 1], 𝑓2 ∈ [0, 1] being linear distributing functions depen-
dent on the current state of the spring deflection and the reference
torque, and 𝑝0 is a tuning parameter to produce meaningful distribution
of the inputs. See Appendix B for the full derivation.

3.4. ADRC tunable parameters

Due to the large number of tunable parameters in the ADRC, it
becomes difficult to evaluate the contribution of each parameter on the
performance of the actuator. For each independent variable (inclusive
of all time derivatives), there is one observer to estimate the states and
one total disturbance term for the subsystem. The MISO systems in (29)
have additional tunable gains equal to the number of inputs multiplied
by the number of extended observers. Multi-input systems also have
multiple transient profile generators. Each 𝑓ℎ𝑎𝑛 function defined in
(16) has two controllable parameters, 𝑟0 and ℎ0. Therefore, the number
of tunable parameters from the transient profile generators is twice
the number of extended state observers. All of the tunable ADRC
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Table 1
Summary of all tunable parameters in an ADRC applied to series elastic actuator (SEA)
control.

Motor subsystem 𝛼1
1 𝛼1

2 𝛽101 𝛽102 𝛽103 𝑝11 𝑝12 𝑟10 ℎ1
0 𝑟11 ℎ1

1

Brake subsystem 𝛼2
1 𝛼2

2 𝛽201 𝛽202 𝛽203 𝑝21 𝑝22 𝑟20 ℎ2
0 𝑟21 ℎ2

1

parameters to be optimized in the following sections are summarized
in Table 1.

4. Reference point dominance-based nondominated sorting ge-
netic algorithm

The MISO ADRC described in the previous section has 22 tun-
able parameters. Finding approximate values for them becomes even
more challenging with multiple control objectives, particularity when
they contradict one another. Therefore, the controller tuning needs a
multi-objective optimizer. As an example, consider two interdependent
control objectives: the minimization of control effort and the mini-
mization of rise time. Since rise time decreases with the control effort,
if the latter is to be minimized the system would have an extended
rise time. When the control objectives are in opposition, there might
not be a single set of values for the ADRC parameters (called solution
hereafter) to satisfy all of the control objectives. In fact, a set of optimal
solutions create a pareto front, that is, a set of solutions that are not
trictly inferior than (or are not dominated by) any other solution. A
olution that performs better than another in at least one objective
nd not worse in any other objective is said to be dominant. Fig. 5
llustrates this phenomenon. The solutions connected with a dotted
ine represent the location of entirely nondominated solutions (pareto
ront). The dominated solutions have one or more solutions with a more
ptimal value for at least one of the objectives. This is represented in
he figure by shaded regions, where the dominating solution lies on the
ottom left corner of the regions and any other solution that is within
his region is therefore dominated for the dual minimization objectives.
n problems with multiple objectives, issues may arise around the
iversity of solutions with complex pareto fronts (Ishibuchi, Setoguchi,
asuda, & Nojima, 2016; Li & Zhang, 2008).

A solution to automate the tuning of an ADRC should incorporate a
ulti-objective optimizer. As mentioned in the introduction, since the
PD-NSGA-II algorithm from Elarbi et al. (2018) is the most efficient
f existing multi-objective solvers, it is selected to tackle the multi-
bjective problem presented in tuning the variables present in the
DRC presented earlier. In multi-objective optimization the goal is to
btain a set of potential solutions with satisfactory performance on all
ronts. The chosen algorithm places emphasis on the diversity of the
opulation in the evolutionary algorithm. The goal of the RPD-NSGA-
I is to have a combination of convergence and diversity, which are
ot independent of one another. The stochastic nature of evolutionary
lgorithms helps improve diversity in the search for optimal solutions,
he non-RPD-dominated sorting and selection of the multiple pareto
ronts allows for convergence around the objectives.

.1. Reference points and distance measures

The diversity guarantee of the RPD-NSGA-II algorithm is attributed
o the reference points generated at the beginning of the process. The
eference points are generated using a method proposed in Das and
ennis (1998), with a set of evenly distributed points on a normalized
yperplane as shown in Fig. 6(a). Once the fitness values for each
bjective are obtained, each range of fitness values are normalized
y the maximum and minimum values, obtaining the solution set as
arked by the green points in Fig. 6(b). The potential solutions are then

ssociated with the nearest reference point vector from the ideal point
origin for minimization problems) along the normalized hyperplane.
onsider the set of solutions in Fig. 6(b) that are nearing the plane
6

Fig. 5. Example of pareto front for control effort (∫ 𝑢𝑑𝑡) and rise time (𝑡𝑟) minimiza-
ion. The pareto front is a set of nondominated solutions with one or more solutions
aving an optimal value for at least one of the objectives.

2 = 0. A two-dimensional visualization is displayed in Fig. 6(c),
here each of the solutions are attributed to a reference point. In this
xample, solution 𝑎 is associated with reference point 𝑟2 and solutions
and 𝑐 are associated with reference point 𝑟3. Once all of the solutions
ave been associated with their respective closest reference point, each
olution is assigned two distance measures, 𝑑1 and 𝑑2, used to aid in
he non-RPD-dominated sorting process. Distance measure 𝑑1 refers to
he magnitude of the distance between the origin (for minimization
roblems) and the normal drawn from the reference vector to the
otential solution, as in Fig. 6(c). This distance relates to convergence
f the solutions, as a smaller magnitude of 𝑑1 means better overall
itness of a solution. Distance measure 𝑑2 refers to the magnitude of
he normal as in Fig. 6(d). This distance is used to help encourage
iversity in the selection process for the next generation, as reference
oints with solution crowding will begin to reduce emphasis on some
f the solutions to favour diversity.

.2. RP-dominance and non-RPD-dominated sorting

The two distance measurements are used to evaluate a solution’s
ominance over other solutions, thereby generating an alternative
o determining pareto fronts apart from pareto-dominance. Let 𝐳 =
𝑧1, 𝑧2,… , 𝑧𝑚] be a vector containing the ADRC tunable parameters
isted in Table 1. A potential solution 𝐳𝟏 has a multi-objective fitness
alue

(𝐳1) = [𝑔1(𝐳1), 𝑔2(𝐳1),… , 𝑔𝑛(𝐳1)] (33)

s said to pareto dominate another solution, say 𝐳2, if

𝑗 (𝐳𝟏) ≤ 𝑔𝑗 (𝐳𝟐) ∀𝑗 = 1, 2,… , 𝑛, ∶ 𝐳2 ∣ 𝐆(𝐳2) = [𝑔1(𝐳2), 𝑔2(𝐳2),… , 𝑔𝑛(𝐳2)]

(34)

nd for at least one 𝑗 = 1, 2,… , 𝑛, ∣ 𝑔𝑗 (𝐳𝟏) < 𝑔𝑗 (𝐳𝟐). For the RPD-NSGA-II
lgorithm, dominance of a solution over another is taken a step further.
olution 𝐳𝟏 is said to RP-dominate solution 𝐳𝟐 if 𝐳𝟏 pareto dominates
𝟐 or if 𝐳𝟏 and 𝐳𝟐 are pareto equivalent and any of the following are
rue (Elarbi et al., 2018): (1) Both solutions are associated with the
ame reference point, but the value of 𝑑1 for 𝐳𝟏 is lower than the value
f 𝑑1 for 𝐳𝟐; or (2) Both solutions are associated with different reference
oints, but the value of 𝑑1 for 𝐳𝟏 is lower than the value of 𝑑1 for 𝐳𝟐 and
here are fewer solutions associated with the same reference point as
𝟏 than that of 𝐳𝟐. This operation is known as computing the reference
oint density.

Therefore, the entire population can be evaluated and placed into
arious dominating ranks. The ranks are an extension of pareto-
ominance, with emphasis on diversity due to the second condition
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Fig. 6. Dominance-based non-dominated sorting genetic algorithm reference points and distance measures. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Fig. 7. Reference point dominance-based nondominated sorting genetic algorithm block diagram.
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above. This methodology is referred to as non-RPD-dominated sort-
ing (Elarbi et al., 2018). Once the entire population has been sorted,
the top 50% of solutions amongst the best performing RP-dominated
pareto fronts progress to the next generation of the optimization loop as
the parent population. If the termination condition of the optimization
process is not achieved, the newly recreated parent population is varied
using standard stochastic genetic algorithm operators (crossover and
mutation) and is re-evaluated for its fitness and distance measures. The
total algorithm with all components is displayed in Fig. 7.

4.3. Performance objectives for SEA

One can now define the control objectives of the ADRC of the multi-
input SEA as the following performance metrics. While all of these are
well known to the control engineer, it is important to clarify how they
relate to SEAs for human–machine interaction specifically.

Tracking error 𝐸𝑡: The strict adherence of a desired output state to
a reference profile is the goal of most control systems and, therefore,
this objective is biased in evaluating fitness in the optimizer. Tracking
error refers to the integral of the error over all time. This is displayed as
the sum of the shaded region in Fig. 8. Ideally, 𝐸𝑡 = 0, which refers to
perfect tracking between the reference 𝑟(𝑡) and the actual output 𝑓 (𝑡).
i.e.,

𝐸𝑡 = ∫

𝑡

0
∣ 𝑟(𝑡) − 𝑓 (𝑡) ∣ 𝑑𝑡 (35)

In the context of the SEA in human–machine interaction, minimal
tracking error refers to the closeness of the desired torque to a reference
torque. See Fig. 8.

Control effort 𝑈𝑡: Refers to the integral of the controller output 𝑢0(𝑡)
over all time:

𝑈𝑡 =
𝑡
∣ 𝑢0(𝑡) ∣ 𝑑𝑡 (36)
∫0

7

The controller effort relates to the actuator’s efficiency, which con-
stitutes a significant objective in portable human–robot interaction
systems such as the SEA presented earlier.

Percent overshoot 𝑃𝑜: Refers to the percentage of the maximum
output value that exceeds the reference. This is particularly useful when
the output 𝑓 (𝑡) is nearing rated hardware limits. 𝑃𝑜 is defined as:

𝑃𝑜 =
max𝑓 (𝑡) − 𝑟(𝑡)

𝑟(𝑡)
× 100% (37)

Minimizing the percent overshoot limits the maximum output torque in
the SEA, which is particularly important in the context of force/torque
control during human–machine interaction.

Rise time 𝑡𝑟: Rise time refers to the time it takes for the system
to reach a value that is 95% of the reference value from the time of
transience. This is useful for high speed switching applications. 𝑡𝑟 is
efined by 𝑡𝑟 = min(𝑡) ∣ 𝑓 (𝑡) ≥ 0.95𝑟(𝑡).
Settling time (𝑡𝑠): Refers to the time it takes for the system to per-

anently settle within ±5% of the reference value measured from the
ime of transience. The settling time 𝑡𝑠 is defined as 𝑡𝑠 = max(𝑡) where ∣
𝑓 (𝑡) − 𝑟(𝑡)) ∣ ≥ 0.05𝑟(𝑡). Although the settling time is a good metric to
etermine stability in response to a transient state, as we shall see later
n, minimizing the settling time in SEAs adds unwanted oscillations
ue to the presence of the elastic element.
Maximum input 𝑢𝑚𝑎𝑥: Refers to the maximum value of the input(s)

f the device. This objective is useful when the source is limited,
earing saturation, or there are tight tolerances around the applied
nput to the plant. 𝑢𝑚𝑎𝑥 is defined as 𝑢𝑚𝑎𝑥 = max(𝑢(𝑡)). Maximum input
s important for devices to be used in close proximity to humans. Note
hat the minimum objective for 𝑢𝑚𝑎𝑥 is the same as that for 𝑈𝑡, as both

are trying to minimize the input.
Steady-state error 𝑒𝑠𝑠: Steady-state error is the error between the

reference and the settled output state when 𝑡 → ∞. This is particularly
useful in high precision applications where there are tight tolerances
on the final state of the output. The steady-state error 𝑒 is defined
𝑠𝑠
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Fig. 8. The top figure demonstrates the response of a system 𝑓 (𝑡) to a reference 𝑟(𝑡). The bottom figure represents the control output 𝑢(𝑡) for this device. The figure demonstrates
ommon controller objectives such as tracking error 𝐸𝑡, control effort 𝑈𝑡, percent overshoot 𝑃𝑜, rise time 𝑡𝑟, settling time 𝑡𝑠, maximum input 𝑈𝑚𝑎𝑥, steady-state error 𝑒𝑠𝑠, disengagement
ime 𝑡𝑑 , and number of input direction changes 𝑁𝛥.
s 𝑒𝑠𝑠 = 𝑟(∞) − 𝑓 (∞). Minimizing the steady-state error is important
n SEAs where precise torque control is more desirable than the time it
akes to reach the reference, allowing for smooth, well-defined motions.
Disengagement time 𝑡𝑑 : Disengagement time is the time the SEA

ctuator takes to release the stored energy in the elastic element or
everse back to an initial state. It is measured from the time disengage-
ent is initiated, 𝑡𝑜𝑖, to the time when it is within 5% of the reference

alue at the time disengagement was initiated. This is important in
pplications regarding physical interaction with humans, as a source
f collision mitigation. 𝑡𝑑 is defined as 𝑡𝑑 = min(𝑡) ∣ 𝑓 (𝑡) ≤ 0.05𝑟(𝑡𝑜𝑖).
uickly reducing the amount of energy in the actuator can ensure there

s no holding torque and minimizes the amount of energy transferred
o the output.
Number of input direction changes 𝑁𝛥: Refers to the number of

nstances the control effort changes sign. High switching applications
ecome difficult to physically implement and can damage sensitive
lants. 𝑁𝛥 is defined as:

𝛥 =
∑

|

|

|

|

sig[𝑢(𝑡)] − sig[𝑢(𝑡 − 1)]
2

|

|

|

|

(38)

his objective is inserted into the algorithm as a method to reduce
he number of high-switching solutions from the population. High
witching in a SEA is undesirable and may be an indication of an
nstable behaviour.

Each of the above objectives are minimization functions, that is, the
inimum value of each objective translates to better performance. A

raphical representation of each of the above objective functions are
isplayed in Fig. 8.

. Application to multi-input series elastic actuators

The ADRC and the optimizer described earlier can now be applied to
ontrol the SEA output torque. Fig. 1(b) shows the experimental setup.

similar reference profile to that shown in Fig. 8 is selected as the
esired torque profile. It is assumed that the torque is proportional to
he spring deflection, hence, the reference profile shown in Fig. 8 is the
esired deflection of the SEA spring and is the input to the controller.
his reference profile is selected to be challenging for the controller,
s well as provide the necessary metrics to compute meaningful values
or each control objective in Section 4.3.

The actuator’s output shaft is connected to a load cell from which
he output torque is measured. Due to this constraint and to ensure
onsistency in the experiments, 𝜃𝑢 = 𝜃̇𝑢 = 0 ∀𝑡, ⟹ 𝜃𝑏 = −𝜃𝑠, for all the
cenarios considered later. The constrained condition of the actuator
o measure the output torque using a load cell diminishes the need
8

for an additional extended state observer. Thus, the controller has two
extended state observers, one for controlling the contributions to the
output deflection based on the motor’s angular displacement and one
for controlling the output deflection based on the angular displacement
of the magnetic particle brake. Therefore, the controller has a total of
22 tunable parameters as listed in Table 1.

The state–space model of the actuator is implemented in the op-
timizer. For every generation, the entire merged population (parent
population and varied population, see Fig. 7) is simulated and the
fitness values for each objective is determined. The optimizer is chosen
to have the crossover and mutation variation parameters set to 35, with
a population of 300, over a total of 500 generations. To ensure the
results provided meaningful control of the plant, a bias is placed on
the tracking error. This provided much more desirable results, where
the fitness values for increasing generations are displayed in Table 2
for a single objective at a time.

5.1. Experimental results

Once the optimization algorithm has run its course, the resulting
pareto front set can be evaluated experimentally with the SEA. Two sets
of experiments are reported: single and multiple objective optimization.
The solution that provides the best result to minimize one or more
control objectives at a time is selected and the gains determined from
the optimizer are physically implemented.

5.2. Single control objective results

Table 2 summarizes the best results obtained in each objective and
the experimental and simulation results are shown in Fig. 9. The top
plot in each panel shows the desired deflection of the elastic element
along with the simulated and measured deflections for the values listed
in Table 2. The bottom panel presents the simulated and experimentally
applied input to the actuator, i.e., the brake and motor voltages.

The ADRC gains are for the motor and brake found to minimize
the tracking error are summarized in the first two lines of Table 3
and the experimental results obtained for these gains are displayed in
Fig. 9a. From the experiments, one can discern that the actuator is
able to maintain reasonable tracking of the spring deflection. The small
perturbation around 12 s is due to backlash in the differential gear. The
result is well matched with the simulated results and certainly performs
favourable for reference tracking.

The optimized gains that minimize the control effort are listed in
the third and fourth lines of Table 3 and the experimental results are
shown in Fig. 9b. A net decrease in the motor voltage can be seen as
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Table 2
Single objective performance over 500 generations.

Generation 𝐸𝑡 𝑈𝑡 𝑃𝑜 𝑡𝑟 𝑡𝑠 𝑢𝑚𝑎𝑥 𝑒𝑠𝑠 𝑡𝑑 𝑁𝛥

10 0.9473 0.0259 31.91 0.158 0.564 0.0893 0.0061 0.004 5
20 0.8659 0.0251 35.75 0.154 0.558 0.0891 0.0023 0.004 5
30 0.8646 0.0245 26.09 0.154 0.558 0.0899 0.0008 0.010 5
40 0.8643 0.0236 25.82 0.154 0.558 0.0916 0.0012 0.006 5
50 0.8637 0.0224 22.43 0.154 0.556 0.0882 0.0003 0.076 5

100 0.8637 0.0219 15.59 0.162 0.556 0.0784 0.0002 0.142 5
150 0.8634 0.0220 17.89 0.124 0.556 0.0786 0.0003 0.114 5
200 0.8632 0.0236 15.31 0.160 0.556 0.0897 0.0003 0.142 5
250 0.8632 0.0249 25.53 0.124 0.556 0.1004 0.0008 0.008 3
300 0.8607 0.0270 25.70 0.134 0.558 0.1030 0.0018 0.004 3
350 0.8588 0.0288 10.97 0.124 0.882 0.1220 0.0036 0.004 0
400 0.8569 0.0256 1.260 0.124 1.222 0.1742 0.0117 0.006 0
450 0.8567 0.0238 4.580 0.126 0.556 0.0974 0.0007 0.022 0
500 0.8557 0.0225 0.037 0.126 0.554 0.0904 0.0010 0.046 0
Table 3
Optimized gains for individual and multiple control objectives.

Gain 𝛼𝑖
1 𝛼𝑖

2 𝛽𝑖01 𝛽𝑖02 𝛽𝑖03 𝑝𝑖1 𝑝𝑖2 𝑟𝑖0 ℎ𝑖
0 𝑟𝑖1 ℎ𝑖

1

Tracking error

Motor ESO 0.50 0.18 1.62 22.48 47.59 0.86 0.03 42.94 1.01 42.61 0.95
Brake ESO 0.47 0.14 1.56 17.84 41.18 0.40 0.97 38.19 0.98 32.36 0.95

Controller effort

Motor ESO 0.46 0.18 1.75 26.16 40.39 0.85 0.14 39.07 0.87 44.16 0.98
Brake ESO 0.36 0.16 1.51 20.16 37.50 0.30 0.69 35.36 0.75 43.57 0.85

Overshoot

Motor ESO 0.50 0.16 1.46 25.02 38.65 0.14 0.69 38.67 0.92 38.76 0.96
Brake ESO 0.46 0.14 1.34 22.95 35.45 0.14 0.64 35.47 0.85 35.55 0.89

Rise time (unstable system)

Motor ESO 0.19 0.49 1.38 24.59 81.02 0.77 0.33 32.03 0.08 43.23 0.28
Brake ESO 0.15 0.48 1.24 22.99 64.82 0.17 0.63 30.57 0.08 41.65 0.27

Settling time

Motor ESO 0.48 0.19 1.67 25.24 46.31 0.74 0.23 42.40 1.02 41.47 0.96
Brake ESO 0.41 0.18 1.31 21.31 42.25 0.21 0.84 41.60 0.96 40.19 0.92

Maximum input

Motor ESO 0.46 0.18 1.75 26.16 40.39 0.85 0.14 39.07 0.87 44.16 0.98
Brake ESO 0.36 0.16 1.51 20.16 37.50 0.30 0.69 35.36 0.75 43.57 0.85

Steady-state error

Motor ESO 0.48 0.18 1.68 24.84 40.25 0.96 0.37 40.62 0.79 45.54 0.96
Brake ESO 0.37 0.15 1.65 23.38 36.70 0.33 0.99 40.18 0.75 38.15 0.78

Time to disengagement

Motor ESO 0.09 0.37 1.51 47.34 49.20 0.80 0.18 29.82 1.65 71.74 0.61
Brake ESO 0.08 0.34 1.23 45.10 40.75 0.07 0.85 25.16 1.33 70.29 0.47

Number of input crossings

Motor ESO 0.19 0.49 1.38 24.59 81.02 0.77 0.33 32.03 0.08 43.23 0.28
Brake ESO 0.42 0.17 1.57 21.82 36.97 0.33 0.68 37.19 0.81 35.88 0.84

Multiobjective: tracking error, control effort, and overshoot

Motor ESO 0.30 0.02 1.59 25.98 40.23 0.73 0.21 38.91 0.71 44.00 0.82
Brake ESO 0.36 0.16 1.48 22.32 38.30 0.12 0.81 36.83 0.69 42.01 0.93
compared to Fig. 9a. One can also note the absence of any overshoot,
which is another indication that the control objective has been attained.

The results for minimal overshoot are shown in Fig. 9c. One can
again observe the lack of overshoot. Further, the control effort resem-
bles again that of Fig. 9a. The results for the settling time, maximum
input, and state error in both the simulations and the experiments
for the gains highlighted in Table 3 are displayed in Figs. 9d, 9e,
and 9f, respectively. From the results it can be seen that each control
objective is achieved. The results of the controller minimizing time
to disengagement using the gains in Table 3 in both the simulations
and experiments are displayed in Fig. 9g. In this objective the fitness
9

value is a function of the number of input direction changes, therefore,
naturally unbiasing high switching solutions.

The minimization of rise time resulted in an unstable controller.
The final population of the 500th generation contained members with
unstable controllers, however, this instability does ensure the output
rises as quickly to the reference as possible. This is a good example on
the importance of defining objectives and biasing the outcome based on
the more important objectives. If there were no bias on any objective,
the unstable controller solution would become selected for variation
into future generations. For the most part, this can have adverse effects
on the progression of the controller gains, as it contradicts most of
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Fig. 9. Single objective experimental results. The best result obtained from using the controller gains determined by the optimizer biased towards minimizing each control objective.
the other objectives. For obvious reasons, the controller was not im-
plemented experimentally and the simulation results are not included
in Fig. 9.

5.3. Multi-objective control results

The optimizer has demonstrated validity in optimizing various sin-
gle objective cases, however, one has the option to choose a solution
that best represents their unique application from the population set
at the end of the optimization. Consider 5 members of the resulting
population shown in Table 4, and their respective fitness values when
the tracking error, control effort, and overshoot, are set as concurrent
control objectives.

If the device was to be used in the context of human–machine
interaction, specifically robot-assisted rehabilitation, there may be a
number of deterrents when selecting the appropriate control strategy.
10
For example, there may be a very specific torque goal in mind and to
ensure that the patient does not experience overexertion and perhaps
the device is destined to be mobile and, therefore, battery operated. In
this case, the most significant objectives to optimize are the tracking
error, control effort, and percent overshoot. If these were the specifi-
cations for the controller design, the three candidate solutions could
be Members 1, 2, 3, and 5 of the population from Table 4, as each
of them have reasonable values for minimizing the three objectives
in question. Member 4 may be discarded, as it is dominated by every
other solution with respect to the significant objectives. Furthermore,
Members 1 and 5 have a percent overshoot that could be considered
unreasonably high for the design specifications and, therefore, could
be discarded as well. The remaining members, 2 and 3, have relatively
similar values for the tracking error 𝐸𝑡 and the percent overshoot 𝑃𝑜,
but vary significantly in control effort 𝑈𝑡. The designer may also choose
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Fig. 10. Experimental results for the multi-objective optimization, as selected by the designer.
Table 4
Multi-objective fitness values for five members.

Member 𝐸𝑡 𝑈𝑡 𝑃𝑜 𝑡𝑟 𝑡𝑠 𝑢𝑚𝑎𝑥 𝑒𝑠𝑠 𝑡𝑑 𝑁𝛥

1 0.8678 0.0281 30.869 0.1740 0.8920 0.1045 0.0076 0.1480 5
2 0.9615 0.1370 0.581 0.1680 1.2220 0.2141 0.0659 0.1440 7
3 1.1783 0.0259 1.237 0.7940 1.0140 0.0942 0.0092 0.1860 5
4 8.3227 0.6353 122.80 0.1500 6.5020 0.4812 236.47 0.1320 65
5 0.9098 0.0307 34.021 0.1700 0.8820 0.1204 0.0068 0.1460 5
to select the gains optimized from Member 3 as it has the lowest control
effort, compromising slightly on tracking error and percent overshoot
compared to Member 2.

The results of Member 3 with optimized gains from Table 4 from the
final population set is demonstrated in Fig. 10. This example demon-
strates the importance of multi-objective optimization in the process of
selecting controller gains for specific applications, where the designer
can view the trade-offs between various solutions. The ability to gauge
the overall performance of a controller provides a means of tailoring
the controller based on the specifications of the application. From the
experimental results, it is clear that the multi-objective optimizer can
combine the features of several single objective problems described in
the previous section.

6. Conclusions

The most difficult portion of active disturbance rejection control is
the tuning of the system parameters. Presented in this paper is the im-
plementation of the RPD-NSGA-II from Elarbi et al. (2018) to optimize
the parameters required for ADRC on a multi-input SEA. By using a
multi-objective optimization technique coupled with a simulation, the
parameters required to achieve the desired performance for a physical
system were determined. The RPD-NSGA-II routine proved capable of
handling this multi-objective optimization problem to provide the end
user with a set of dominating solutions such that the designer is able to
choose gain values based on the objectives most suitable for their ap-
plications. Comparing the results of this paper with other optimization
algorithms is difficult since this is the only implementation of a generic
algorithm to a dual input SEA. However, for a comparison between
the performance of this optimizer and other decomposition-based multi
objective genetic algorithms, the reader is refereed to Elarbi et al.
(2018), and a comparison between a PID controller and an ADRC
applied to the same SEA is available in DeBoon, Nokleby, and Rossa
(2020).

In order to choose gains that are favourable to multiple objectives,
the designer could evaluate the set of fitness values for each member
of the resulting population and determine how they want to bias their
11
controller. The relative trade-offs between the objectives becomes ap-
parent and, therefore, the designer can select the set of gains that is best
suited for their applications. There are a wide number of applications
for an ADRC optimization method. Since active disturbance rejection
control is a favourable alternative to PID, the controller can be used in
a multitude of plants ranging from robotic actuators used in medical
devices to autonomous vehicles and industrial automation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Expanded state observers for the multi-input series
elastic actuator

The three extended state observers can be determined from the
equalities: 𝑥̄11 = 𝜃𝑚, 𝑥̄21 = 𝜃𝑏, and 𝑥̄31 = 𝜃𝑠. The systems of equations
for the subsystems are structured as follows. For the motor subsystem:

⎧

⎪

⎨

⎪

⎩

̇̄𝑥11 = 𝑥̄12
̇̄𝑥12 = − 𝑘𝑠

𝐽𝑚
𝑥11 −

𝑏𝑚
𝐽𝑚

𝑥12 +
𝑘𝑠
𝐽𝑚

𝑥31 +𝐷1(𝑡) + 𝑓𝑚(𝑡, 𝛩)𝑉𝑚
𝑦1 = 𝑥̄11

(A.1)

For the brake subsystem:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

̇̄𝑥21 = 𝑥̄22
̇̄𝑥22 =

𝐽𝑢𝑘𝑠
𝐽 𝑥11 +

𝐽𝑠𝑘𝑢
𝐽 𝑥21 +

𝐽𝑢(2𝑏𝑑+𝑏𝑏)−𝐽𝑠(4𝑏𝑑+4𝑏𝑏−𝑏𝑢)
𝐽 𝑥22 +

𝐽𝑠𝑘𝑢−𝐽𝑢𝑘𝑠
𝐽 𝑥31

+ 𝐽𝑠(4𝑏𝑑+𝑏𝑢)−𝐽𝑢(𝑏𝑠+2𝑏𝑑 )
𝐽 𝑥32 +𝐷2(𝑡) + 𝑓𝑏1(𝑡, 𝛩)𝑉𝑏

𝑦2 = 𝑥̄2

(A.2)
⎩

1
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t
t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

a
p
c
f

𝑢

𝑝

D

For the spring subsystem:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̇̄𝑥31 = 𝑥̄32
̇̄𝑥32 =

(4𝐽𝑏−𝐽𝑢)𝑘𝑠
𝐽 𝑥11 +

𝐽𝑏𝑘𝑢
𝐽 𝑥21 +

𝐽𝑏(4𝑏𝑑+𝑏𝑢)−𝐽𝑢(2𝑏𝑑+𝑏𝑏)
𝐽 𝑥22 +

𝐽𝑏𝑘𝑢−4𝐽𝑏𝑘𝑠+𝐽𝑢𝑘𝑠
𝐽 𝑥31

+ 𝐽𝑢(𝑏𝑠+2𝑏𝑑 )+𝐽𝑏(𝑏𝑢−4𝑏𝑠−4𝑏𝑏)
𝐽 𝑥32 +𝐷3(𝑡) + 𝑓𝑏2(𝑡, 𝛩)𝑉𝑏

𝑦3 = 𝑥̄31

(A.3)

where 𝐽 = 4𝐽𝑠𝐽𝑏 − 𝐽𝑢𝐽𝑠 − 𝐽𝑢𝐽𝑏. These equations can be converted to
hree extended state variables, each with their own total disturbance
erms 𝑥̄𝑖3. For the motor subsystem:

̇̄𝑥11 = 𝑥̄12
̇̄𝑥12 = 𝑥̄13 +

𝐾𝑚𝐾𝑣
𝐽𝑚𝑅𝑎

𝑉𝑚
𝑦1 = 𝑥̄11,

𝑥̄13 = − 𝑘𝑠
𝐽𝑚

𝑥11 −
𝑏𝑚
𝐽𝑚

𝑥12 +
𝑘𝑠
𝐽𝑚

𝑥31 +𝐷1(𝑡) +
(

𝑓𝑚(𝑡, 𝛩) − 𝐾𝑚𝐾𝑣
𝐽𝑚𝑅𝑎

)

𝑉𝑚

(A.4)

The linear approximation of the input function in this case is 𝑓𝑚(𝑡, 𝛩) ≅
𝐾𝑚𝐾𝑣
𝐽𝑚𝑅𝑎

. Therefore, 𝑏̄1 = 𝐾𝑚𝐾𝑣
𝐽𝑚𝑅𝑎

. Similarly for the brake subsystem:

̇̄𝑥21 = 𝑥̄22
̇̄𝑥22 = 𝑥̄23 +

𝐾ℎ(𝐽𝑢−4𝐽𝑠)
𝑅𝑏𝐽

𝑉𝑏

𝑦2 = 𝑥̄21,

𝑥̄13 =
𝐽𝑢𝑘𝑠
𝐽 𝑥11 +

𝐽𝑠𝑘𝑢
𝐽 𝑥21 +

𝐽𝑢(2𝑏𝑑+𝑏𝑏)−𝐽𝑠(4𝑏𝑑+4𝑏𝑏−𝑏𝑢)
𝐽 𝑥22 +

𝐽𝑠𝑘𝑢−𝐽𝑢𝑘𝑠
𝐽 𝑥31

+ 𝐽𝑠(4𝑏𝑑+𝑏𝑢)−𝐽𝑢(𝑏𝑠+2𝑏𝑑 )
𝐽 𝑥32 +𝐷2(𝑡) +

(

𝑓𝑏1(𝑡, 𝛩) − 𝐾ℎ(𝐽𝑢−4𝐽𝑠)
𝑅𝑏𝐽

)

𝑉𝑏

(A.5)

The linear approximation of the input function in this case is 𝑓𝑏1(𝑡, 𝛩) ≅
𝐾ℎ(𝐽𝑢−4𝐽𝑠)

𝑅𝑏𝐽
. Therefore, 𝑏̄2 = 𝐾ℎ(𝐽𝑢 − 4𝐽𝑠)∕(𝑅𝑏𝐽 ). Finally for the spring

subsystem:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

̇̄𝑥31 = 𝑥̄32
̇̄𝑥32 = 𝑥̄33 −

𝐾ℎ𝐽𝑢
𝑅𝑏𝐽

𝑉𝑏

𝑦3 = 𝑥̄31,

𝑥̄13 =
(4𝐽𝑏−𝐽𝑢)𝑘𝑠

𝐽 𝑥11 +
𝐽𝑏𝑘𝑢
𝐽 𝑥21 +

𝐽𝑏(4𝑏𝑑+𝑏𝑢)−𝐽𝑢(2𝑏𝑑+𝑏𝑏)
𝐽 𝑥22 +

𝐽𝑏𝑘𝑢−4𝐽𝑏𝑘𝑠+𝐽𝑢𝑘𝑠
𝐽 𝑥31

+ 𝐽𝑢(𝑏𝑠+2𝑏𝑑 )+𝐽𝑏(𝑏𝑢−4𝑏𝑠−4𝑏𝑏)
𝐽 𝑥32 +𝐷3(𝑡) +

(

𝑓𝑏2(𝑡, 𝛩) + 𝐾ℎ𝐽𝑢
𝑅𝑏𝐽

)

𝑉𝑏

(A.6)

The linear approximation of the input function in this case is 𝑓𝑏2(𝑡, 𝛩) ≅
−𝐾ℎ𝐽𝑢

𝑅𝑏𝐽
. Therefore, 𝑏̄3 = −(𝐾ℎ𝐽𝑢)∕(𝑅𝑏𝐽 ). The three extended state ob-

servers for the actuator are defined by:
Motor subsystem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇̂𝑥11 = 𝑥̂12 − 𝛽101𝑔
1
1 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

1(𝑡))
̇̂𝑥12 = 𝑥̂13 − 𝛽102𝑔

1
2 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

1(𝑡)) + 𝑏̄1(𝑡)𝑢1

̇̂𝑥13 = −𝛽103𝑔
1
3 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

1(𝑡))
𝑦̂1 = 𝑥̂11

(A.7)

where 𝛽10𝑗 , 𝑗 = 1, 2, 3 are observer proportional coefficients selected
by the designer. 𝑔𝑗1, 𝑗 = 1, 2, 3 are observer error functions. The error
function suggested from Han (2009) provide nonlinear observer error
functions as:

𝑔11 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂
1(𝑡)) = (𝑥̂11 − 𝑥11) = (𝜃̂𝑚 − 𝜃𝑚)

𝑔12 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂
1(𝑡)) = 𝑓𝑎𝑙(𝑥̂11 − 𝑥11, 𝛼

1
1 , ℎ) = 𝑓𝑎𝑙(𝑥̂11 − 𝑥11, 0.5, ℎ)

𝑔13 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂
1(𝑡)) = 𝑓𝑎𝑙(𝑥̂11 − 𝑥11, 𝛼

1
2 , ℎ) = 𝑓𝑎𝑙(𝑥̂11 − 𝑥11, 0.25, ℎ)

where 𝜃𝑚 is determined by the profile generator in Eq. (19) and the
𝑓𝑎𝑙 function is defined in Eq. (28). Similarly the brake and spring
12
subsystems, respectively, are:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

̇̂𝑥21 = 𝑥̂22 − 𝛽201𝑔
2
1 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

2(𝑡))
̇̂𝑥22 = 𝑥̂23 − 𝛽202𝑔

2
2 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

2(𝑡)) + 𝑏̄2(𝑡)𝑢2

̇̂𝑥23 = −𝛽203𝑔
2
3 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

2(𝑡))
𝑦̂2 = 𝑥̂21
𝑔21 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

2(𝑡)) = (𝑥̂21 − 𝑥21) = (𝜃̂𝑏 − 𝜃𝑏)
𝑔22 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

2(𝑡)) = 𝑓𝑎𝑙(𝑥̂21 − 𝑥21, 𝛼
2
1 , ℎ) = 𝑓𝑎𝑙(𝑥̂21 − 𝑥21, 0.5, ℎ)

𝑔23 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂
2(𝑡)) = 𝑓𝑎𝑙(𝑥̂21 − 𝑥21, 𝛼

2
2 , ℎ) = 𝑓𝑎𝑙(𝑥̂21 − 𝑥21, 0.25, ℎ)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

̇̂𝑥31 = 𝑥̂32 − 𝛽301𝑔
3
1 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

3(𝑡))
̇̂𝑥32 = 𝑥̂33 − 𝛽302𝑔

3
2 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

3(𝑡)) + 𝑏̄3(𝑡)𝑢3

̇̂𝑥33 = −𝛽303𝑔
3
3 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

3(𝑡))
𝑦̂3 = 𝑥̂31
𝑔31 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

3(𝑡)) = (𝑥̂31 − 𝑥31) = (𝜃̂𝑠 − 𝜃𝑠)
𝑔32 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂

3(𝑡)) = 𝑓𝑎𝑙(𝑥̂31 − 𝑥31, 𝛼
3
1 , ℎ) = 𝑓𝑎𝑙(𝑥̂31 − 𝑥31, 0.5, ℎ)

𝑔33 (𝜃𝑚, 𝜃𝑏, 𝜃𝑠, 𝑦̂
3(𝑡)) = 𝑓𝑎𝑙(𝑥̂31 − 𝑥31, 𝛼

3
2 , ℎ) = 𝑓𝑎𝑙(𝑥̂31 − 𝑥31, 0.25, ℎ)

Appendix B. Expanded control law

The overall control law for the system can be described as follows:

𝑢𝑞(𝑡) = −

(

𝑝1𝑞
𝑥̂13(𝑡) − 𝑢1𝑝

𝑏̄1
+ 𝑝2𝑞

𝑥̂23(𝑡) − 𝑢2𝑝
𝑏̄2

+ 𝑝3𝑞
𝑥̂33(𝑡) − 𝑢3𝑝

𝑏̄3

)

(B.1)

where 𝑢𝑞(𝑡) is the overall control input to the plant, 𝑞 = 1 relates to the
motor voltage and 𝑞 = 2 relates to the brake input voltage, 𝑝𝑖𝑞 , 𝑖 = 1, 2, 3
re proportional input contribution gains, and 𝑢𝑖𝑝, 𝑖 = 1, 2, 3 are the
roposed input contribution for each of the three nonlinear feedback
ombiners. Let: 𝜀𝑚 = 𝜃̂𝑚 − 𝜃𝑚, 𝜀𝑏 = 𝜃̂𝑏 − 𝜃𝑏, 𝜀𝑠 = 𝜃̂𝑠 − 𝜃𝑠. The control law
or the MISO system can be defined as follows:

𝑞(𝑡) = 𝑝1𝑞
𝑓ℎ𝑎𝑛(𝜀𝑚, 𝜀̇𝑚, ℎ11, 𝑟

1
1) − 𝑥̂13(𝑡)

𝑏̄1
+

𝑝2𝑞
𝑓ℎ𝑎𝑛(𝜀𝑏, 𝜀̇𝑏, ℎ21, 𝑟

2
1) − 𝑥̂23(𝑡)

𝑏̄2
+ 𝑝3𝑞

𝑓ℎ𝑎𝑛(𝜀𝑠, 𝜀̇𝑠, ℎ31, 𝑟
3
1) − 𝑥̂33(𝑡)

𝑏̄3

An alternative control law to the one proposed in (29) is described by
the following nonlinear PD feedback combiner provided that 0 < 𝛾 𝑖1 <
1 < 𝛾 𝑖2 and ℎ is the sampling period:

𝑢𝑞(𝑡) = 𝑝1𝑞
(𝑘11 𝑓𝑎𝑙(𝜀𝑚, 𝛾11 , ℎ) + 𝑘12 𝑓𝑎𝑙(𝜀̇𝑚, 𝛾12 , ℎ)) − 𝑥̂13(𝑡)

𝑏̄1
+

2
𝑞

(𝑘21 𝑓𝑎𝑙(𝜀𝑏, 𝛾21 , ℎ) + 𝑘22 𝑓𝑎𝑙(𝜀̇𝑏, 𝛾22 , ℎ)) − 𝑥̂23(𝑡)

𝑏̄2

+𝑝3𝑞
(𝑘31 𝑓𝑎𝑙(𝜀𝑠, 𝛾31 , ℎ) + 𝑘32 𝑓𝑎𝑙(𝜀̇𝑠, 𝛾32 , ℎ)) − 𝑥̂33(𝑡)

𝑏̄3
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